Z6尊龙凯时

— 生态 · 农业 · 康健 —
国际相助(Partners)
MAVEn?高通量16通道果蝇代谢监测系统

时间:2019-06-06

作者:Z6尊龙凯时

点击量:

简介:

 

果蝇作为经济适用的模式动物 ,可用于中枢神经系统杂乱、炎症性病变、心血管疾病、癌症以及糖尿病等治疗研究 ,而这些疾病的爆发从心理上来说都与生物个体恒久的代谢功效异常亲近相关 。

MAVEn™高通量16通道果蝇代谢监测系统是由天下着名的美国Sable Systems International动物代谢丈量公司生产的一款16通道、高区分率及自动化的果蝇代谢监测仪器 ,可普遍用于代谢杂乱造成的种种盛行疾病治疗的机理研究 。

 

image.png

 

MAVEn™果蝇代谢系统作为果蝇代谢分型监测方面的权威产品 ,主要具备以下特点:

1. 改变了古板的单只果蝇的关闭或半关闭式丈量模式 ,实现每个丈量室都有实时气流通过的完全开放式丈量 ,阻止了丈量时内泛起缺氧(hypoxia)或高碳酸血症(hypercapnia) ,可一次丈量多达16只个体 。

2. 15秒就可以完成一只果蝇的代谢监测 ,这代表了现在手艺的最高水平 。

3. 数据可以通过SD卡把带时间标签的CSV名堂直接导出到电脑 。

4. 可选配FLIC果蝇觅食、AD-2果蝇运动、气体(氧气、二氧化碳、水汽以及其它可检测气体)等监测单位 。

5. 参考文献最多 ,高达4万多篇 ,属于前沿科技 。

 

image.png

 

详细性能指标:

1.气流流速:5毫升/分钟-200毫升/分钟 ,质量流量计 ,PID准确控制 ,精度为2% 。

2.昆虫丈量时间:15秒-3小时可程序化选择;基线丈量时间:15秒-3小时可程序化选择 。

3.气压丈量:区分率1Pa,精度0.05% 。Z6·尊龙凯时「中国」官方网站

4.光照水平:0.1-5000勒克斯 。

5.温度丈量:0-50℃ ,区分率0.01℃ ,精度±0.25℃ 。

6.模拟输入:6个模拟输入 ,16bit区分率 ,-5至+5伏电压信号 ,可接SSI其它仪器或实验室其它气体剖析仪等 。

7.数据名堂:CSV名堂;数据存储:SD卡 ,最大支持32G的SD卡 。

8.双通道高精度差分式氧气剖析丈量仪:丈量手艺:燃料电池原理氧气传感器 ,双通道;氧气浓怀抱程0-100%(用户可自界说设置5个级别);差值量程±50%;精度0.1%(O2浓度2-100%时);区分率0.0001%O2;漂移< 0.01%每小时(温度恒定情形下);响应时间小于7秒;24小时漂移<0.01%;20分钟噪音<3ppm RMS;数字过滤(噪音)0-40秒可调 ,增幅0.2秒 ,内置A/D转换器区分率16bits;温度、压力赔偿;传感器温度丈量规模0-60℃ ,精度0.2℃ ,区分率0.001℃;大气压丈量区分率0.0001kPa ,精度为满量程的0.05%;适用流量规模5-2000mL/min;4通道模拟信号输出(0-5V BNC)可输出通道1的氧气浓度 ,通道2的氧气浓度 ,1和2的差值 ,大气压;数字输出:RS-232;具4行文字LCD显示屏 ,带背光 ,可同时显示2个通道的氧气含量和它们的差值 ,以及大气压;独具PID(Proportional-Integral-Derivative)温控单位 ,包管内部氧气传感器温度恒定 ,进一步提高了氧气丈量的精度和稳固性;供电12-24VDC ,8A ,配交流电适配器;事情温度:5-45℃ ,无冷凝;重量6.4kg;尺寸43.2cm×35.6cm×20.3cm

9.超高精度二氧化碳剖析丈量仪:用于丈量细小昆虫(好比果蝇、蚊子等)或蜱螨类细小动物的呼吸代谢 ,可同时丈量CO2浓度和H2O浓度;CO2量程0-3000ppm;准确度<1%;区分率0.01ppm;H2O量程0-60mmol/mol;准确度1%;

10.二次抽样单位:内置气泵、细密针阀、质量流量计 ,可用来给气流样本做二次抽样 ,也可单独作为气源使用;流量规模5-2000mL/min;精度为读数的10%;区分率1mL/min;具备2行显示LCD显示屏;带0-5V BNC模拟信号输出;数字输出RS-232;供电12-15VDC ,20-350mA ,配交流电适配器;事情温度:0-50℃ ,无冷凝;重量1.5kg;尺寸16cm×13cm×20cm;

 

产地:美国

 

文献案例:

在2016年已揭晓的果蝇有关文献中 ,使用SSI果蝇代谢监测系统的达14篇 ,2015年11篇 ,阻止现在相关文献共计500多篇 。

1. Andrew N R, Ghaedi B, Groenewald B. The role of nest surface temperatures and the brain in influencing ant metabolic rates[J]. Journal of Thermal Biology, 2016, 60: 132-139.

2. Baaren J, Dufour C M S, Pierre J S, et al. Evolution of life‐history traits and mating strategy in males: a case study on two populations of a Drosophila parasitoid[J]. Biological Journal of the Linnean Society, 2016, 117(2): 231-240.

3. Bartholomew N R, Burdett J M, VandenBrooks J M, et al. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia[J]. Scientific reports, 2015, 5.

4. Basson C H, Clusella-Trullas S. The behavior-physiology nexus: behavioral and physiological compensation are relied on to different extents between seasons[J]. Physiological and Biochemical Zoology, 2015, 88(4): 384-394.

5. Bosco G, Clamer M, Messulam E, et al. EFFECTS OF OXYGEN CONCENTRATION AND PRESSURE ON Drosophila melanogaster: OXIDATIVE STRESS, MITOCHONDRIAL ACTIVITY, AND SURVIVORSHIP[J]. Archives of insect biochemistry and physiology, 2015, 88(4): 222-234.

6. Casas J, Body M, Gutzwiller F, et al. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp[J]. Journal of insect physiology, 2015, 79: 27-35.

7. Correa Y D C G, Faroni L R A, Haddi K, et al. Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais[J]. Pesticide biochemistry and physiology, 2015, 125: 31-37.

8. DeVries Z C, Kells S A, Appel A G. Estimating the critical thermal maximum (CT max) of bed bugs, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2016, 197: 52-57.

9. Dreiss A N, Séchaud R, Béziers P, et al. Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl[J]. Oecologia, 2016, 180(2): 371-381.

10. Duun Rohde P, Krag K, Loeschcke V, et al. A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population[J]. International Journal of Genomics, 2016, 2016.

11. Fischer K E, Gelfond J A L, Soto V Y, et al. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life[J]. PloS one, 2015, 10(5): e0126644.

12. Groom D J E, Toledo M C B, Welch K C. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient[J]. Journal of Comparative Physiology B, 2016: 1-18.

13. Gudowska A, Boardman L, Terblanche J S. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper, Paracinema tricolor[J]. Journal of Experimental Biology, 2016: jeb. 135129.

14. Haddi K, Mendes M V, Barcellos M S, et al. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros[J]. PloS one, 2016, 11(6): e0156616.

15. Haddi K, Oliveira E E, Faroni L R A, et al. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae)[J]. Journal of economic entomology, 2015: tov255.

16. Horváthová T, Antol A, Czarnoleski M, et al. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?[J]. ZooKeys, 2015 (515): 67.

17. Kivelä S M, Lehmann P, Gotthard K. Do respiratory limitations affect metabolism of insect larvae before moulting: an empirical test at the individual level[J]. Journal of Experimental Biology, 2016: jeb. 140442.

18. Lebeau J, Wesselingh R A, Van Dyck H. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes[C]//Proc. R. Soc. B. The Royal Society, 2016, 283(1830): 20160455.

19. MacMillan H A, Schou M F, Kristensen T N, et al. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura[J]. Biology letters, 2016, 12(5): 20160123.

20. Meyers P J, Powell T H Q, Walden K K O, et al. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression[J]. Journal of Experimental Biology, 2016: jeb. 140566.

21. Plavšin I, Stašková T, Šerý M, et al. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2015, 170: 19-27.

22. Rodrigues C G, Krüger A P, Barbosa W F, et al. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera)[J]. Journal of economic entomology, 2016, 109(3): 1001-1008.

23. Thienel M, Canals M, Bozinovic F, et al. The effects of temperature on the gas exchange cycle in Agathemera crassa[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 183: 126-130.

24. Williams C M, Chick W D, Sinclair B J. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth[J]. Functional Ecology, 2015, 29(4): 549-561.

25. Williams C M, Szejner-Sigal A, Morgan T J, et al. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates[J]. Integrative and comparative biology, 2016: icw009.

 

 

 

- 返回列表 -
看不清 ?换一张
{{isLoading?'生涯中':'生涯'}}
Z6·尊龙凯时「中国」官方网站

西安研发中心

微信公众号

Z6·尊龙凯时「中国」官方网站

营业咨询

微信号

Z6·尊龙凯时「中国」官方网站

Z6尊龙凯时公司

微信公众号

Z6·尊龙凯时「中国」官方网站

Z6尊龙凯时公司

视频号

联系Z6尊龙凯时:

地点: 北京市海淀区高里掌路3号院6号楼1单位101B

电话: 010-82611269/1572

手机: 13671083121

传真: 010-62465844

Email: info@eco-tech.com.cn

友情链接:

X
1

QQ设置

  • 客服
5

电话号码治理

  • 北京 010-82611269 13671083121
6

二维码治理

Z6·尊龙凯时「中国」官方网站
网站地图